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Background

 Variable Heat Rejection Radiator technology needed for 
future NASA human rated & robotic missions

 Primary objective is to enable a single loop architecture for 
human-rated missions

• Radiators are typically sized for maximum heat load in the warmest 
continuous environment resulting in a large panel area

• Large radiator area results in fluid being susceptible to freezing at low 
load in cold environment and typically results in a two-loop system

• Dual loop architecture is approximately 18% heavier than single loop 
architecture (based on Orion thermal control system mass (09ICES-0353))

• Single loop architecture requires adaptability to varying environments 
and heat loads
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Example Mission Profile

*Time-Averaged



Digital Radiator Concept



 The concept is based on using valves to turn ‘on’ or ‘off’ the fluid flow 
through parallel fluid lines imbedded in the radiator

 Extensive analytical work was performed using Thermal Desktop/Fluint to 
investigate the feasibility of this concept

 Several bench-top tests were performed to verify the fluid evacuation from 
closed tubes and to verify circulation in the tubes after they have 
experienced temperatures below the fluid freeze point

 Several fluids were investigated to understand performance

 Based on results from test and analysis, a scaled Digital Radiator design 
will be developed and tested
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Digital Radiator Concept



Digital Radiator Concept Tests

• Bench top testing 
performed early on for 
proof of concept (2006-07)

• Results fed into further 
testing and thermal model 
development (2008-10)



Thermal Model Description

Aluminum Facesheet (In)
t = 0.011”

Aluminum Facesheet (Out)
t = 0.011”

Radiation to Sink

Aluminum Finned Tubing per Panel
Qty = 23, OD = 3/8”, t = 0.028”

High Bondline Conductance
Contactor to Inside of Top Facesheet

Contactor from Top to Bottom 
Facesheets: 300 W/m-K

Represents ½” Honeycomb

Four panels of 2m x 3m in 
parallel with bypass line.

Future Improvements: Non-infinite bondline, transient cases, control feedback loop, pressure drop concerns



Key Model Assumptions

 Working fluid is 50/50 PGW

 Manifold designed to provide equal mass flow to each tubing segment

 Requirements time-averaged over specific portions of the mission profile

 Bypass line completely insulated

 Embedded tubing thermally shorted to front panel



Trade Space

Traded Parameters Performance 
Parameters Constants Final 

Configuration

Radiator Area - Outlet Temperature
- Heat Rejection
- Overall Mass

Radiators
- 4 Radiators
- Al 6061-T6 
- Facesheets, 0.011” Thick
- Al Honeycomb Core, ½” 
Thick

- 10-mil Silverized Teflon 
Coating

- Embedded Tubes

Tubing
- Finned
- Al 6061-T6
- Even Spacing
- 0.028”  Wall

Radiators
- Area
- Mass

Tubing
- Quantity
- Diameter
- Orientation

Fluid
- Mass Flow

Tube Diameter

Tube Quantity

Tube Orientation - Outlet Temperature
- Heat RejectionFluid Mass Flow



Tube Diameter Study
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• No significant increase in 

heat rejection found for 
various tube diameters

• Evacuation shown to 
work in tests on 3/8” 
tubing

*23 Finned Tubes, 2m x 3.3m Panel, 205K Sink, 0.058kg/s Mass Flow



Tube Quantity Study
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Tube Quantity
• Increase in tube quantity 

per panel results in an 
increase in heat rejection 
due to fin efficiency

• A “knee” occurs at 
approximately 23 tubes

• Tube quantity and 
associated fluid found to 
have significant effect on 
mass

*Finned Tubes, 2m x 3m Panel, 210K Sink, 0.06kg/s Mass Flow



Panel Size Study

• Data shown for internally 
finned and smooth wall 
tubing

• Finned tubing shows 
increase in heat rejection

• Panels sized for LSO 
(worst case hot). A panel 
size of 6m2 (2m by 3m) is 
shown to reject the 
required minimum of 
6040W to a 210K sink.
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*23 Finned/Smooth Tubes, 210K Sink, 0.06kg/s Mass Flow



Mass Flow Study
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• An increase in mass flow 
results in an increase in 
heat rejection as well as 
an increase in outlet 
temperature

• A mass flow of 0.06kg/s 
provides maximum heat 
rejection while meeting 
the 10C desired outlet 
temperature for cabin 
feedback

*23 Finned Tubes, 2m x 3m Panel, 210K Sink
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TSINK = 190K

QREJ = 1084W

TSINK = 190K

QREJ = 0W

TSINK = 190K

QREJ = 0W

TSINK = 190K

QREJ = 0W

TIN = 288K

Total mDOT = 0.06kg/s

TOUT = 282.6K

Total QREJ = 1084W

Bypass             
mDOT = 0kg/s

∆T ~ 5K

Required QREJ = 1080W

Mission Profile: LEO

* Average sink temperatures 
and heat rejection



Required QREJ = 936W

TSINK = 72K

QREJ = 936W

TSINK = 72K

QREJ = 0W

TSINK = 72K

QREJ = 0W

TSINK = 72K

QREJ = 0W

TIN = 288K

Total mDOT = 0.06kg/s

TOUT = 283.4K

Total QREJ = 936W

Bypass             
mDOT = 0.05kg/s

∆T ~ 5K

Mission Profile: LEO

* Average sink temperatures 
and heat rejection



Required QREJ = 3535W

TSINK = 72K

QREJ = 1776W

TSINK = 72K

QREJ = 1776W

TSINK = 72K

QREJ = 0W

TSINK = 72K

QREJ = 0W

TIN = 301K

Total mDOT = 0.06kg/s

TOUT = 283.6K

Total QREJ = 3552W

Bypass             
mDOT = 0.023kg/s

∆T ~ 17K

Mission Profile: TLC

* Average sink temperatures 
and heat rejection



TSINK = 222K

QREJ = 1336W

TSINK = 222K

QREJ = 1335W

TSINK = 222K

QREJ = 1335W

TSINK = 222K

QREJ = 808W

TIN = 307K

Total mDOT = 0.06kg/s

TOUT = 283.5K

Total QREJ = 4810W

Bypass             
mDOT = 0.01kg/s

∆T ~ 23K

Mission Profile: TLC

Required QREJ = 4800W

* Average sink temperatures 
and heat rejection



TSINK = 210K

QREJ = 1552W

TSINK = 210K

QREJ = 1552W

TSINK = 210K

QREJ = 1552W

TSINK = 210K

QREJ = 1552W

TIN = 313K

Total mDOT = 0.06kg/s

TOUT = 283K

Total QREJ = 6207W

Bypass             
mDOT = 0kg/s

∆T ~ 30K

Mission Profile: LSO

Required QREJ = 6040W

* Average sink temperatures 
and heat rejection



Point Design Metrics
Point design metrics for the digital radiator include:

• Mass: 
- Radiator Panel
- Fluid in the Tubes
- Mass of the Tube Material
- Latch Valves to Control Tube Flow*
- Heaters (Start-Up)
- Check Valves
- Evacuation pump*
- Accumulator*

• Power:
- Evacuation pump
- Start-up Heater

• Volume:
- Available space

• Reliability: High (Latch valves have been used in flight, so also pumps)
• Scalability: Excellent  (mass of radiator and  valves scale directly,  mass 

of pump and accumulator scales at a reduced levels)  
• TRL:   5-6 (currently it is at TRL  4-5) 

*  Key additional elements in DR compared to Apollo stagnation radiator



 Several challenges exist in the development of full-scale Digital Radiator for 
future NASA missions

- The development of lightweight two-way and three-way latch valves for 
flight radiator

- Evaluation of evacuation for smaller diameter tubes (both finned and 
smooth) for mass savings

- Obtaining reliable components with the mass estimates used

- Reliable operation of the completely integrated single panel with the 
pumps, accumulator, and radiator

Hardware Challenges and Risks 



Performance Challenge

• LLO will provide a highly 
variable sink temperature yet 
require steady heat rejection.

• A sublimator may be 
implemented to handle the 
high temperatures but freezing 
may occur at the low end.

• Knowledge of thermal mass 
associated with spacecraft 
required to determine transient 
performance.

• Heaters, heat exchanger, or 
alternative fluids may be 
necessary to handle reaction 
times.



Design Summary

 Design capable of maintaining outlet temperature throughout       
mission

 All panels identical and within area constraints

 Two tube evacuations required for mission profile

 Pressure drop across panels less than 10psi

 Multiple configurations (such as various tube quantities per panel) 
capable of meeting mission profile

 Design for optimal mass and power involves iterations on model 
trades and laboratory tests


